Nuclear Energy

Nuclear Energy University Programs (NEUP) Fiscal Year (FY) 2015 Annual Planning Webinar

RC-06: Computational Methodologies to Support Design and Analysis of Sodium-cooled Fast Reactors

Thomas Sowinski

August 2014

Methodologies Objectives

Nuclear Energy

- Develop Tools to Support Design and Analysis of Sodium-cooled Fast Reactors
 - Neutronics / Thermal-Hydraulics / Structural Performance
 - Normal Operations and Postulated Accidents
- Raise Technical Readiness
- Support Commercial Deployment

Methodologies Overview

Nuclear Energy

- Sodium-cooled Fast Reactor neutronics analysis methods
 - Point kinetics
 - Neutron diffusion and transport
 - Characterization of complex reactivity feedback mechanisms to model inherent safety behavior of fast reactors
- Thermal-hydraulics analysis methods for modeling very low Prandtl-number liquid metal flow and heat transfer
 - Systems and safety analysis tools
 - Subchannel methods
 - Computational Fluid Dynamics (CFD) methods

Current Activities

Nuclear Energy

Ongoing Experimental Work

- Ex-vessel cooling at Argonne's Natural-circulation Shutdown Test Facility (NSTF)
- Archiving past integral transient testing data from EBR-II, FFTF, and TREAT reactors to support code validation efforts

Code development activities

- Enhancement of SAS4A/SASSYS-1 systems and safety analysis code system
- Incorporating sodium accident analysis capabilities of CONTAIN-LMR under MELCOR code to support containment design-basis assessments with respect to sodium fires

Specific Topics of Interest

Contributions to the development of advanced modules in the following areas:

 Modeling pin-power reconstruction, temperature gradient, and reactivity feedback distributions within a SFR subassembly using transport-based flux solutions for evaluating:

Steady-state thermal-hydraulic analysis

Fuel bowing and core radial expansion effects

Specific Topics of Interest (Cont.)

Nuclear Energy

- Modeling the mixing and thermal-stratification in large volumes of a pool-type SFR (e.g., upper plena) following a scram including its influence on:
 - Natural circulation flow rates,
 - Decay heat removal.

Summary

- Develop Tools to Support Design and Analysis of Sodium- cooled Fast Reactors
 - Raise Technical Readiness
 - Support Commercial Deployment
- Strong consideration given to enhancement, validation & verification, and use in uncertainty analyses of codes and analysis capabilities currently being developed under the ART program
- Specific topics of interest include:
 - Modeling pin-power reconstruction, temperature gradient, and reactivity feedback distributions within a SFR subassembly to support thermal-hydraulic analysis and fuel bowing effect
 - Modeling post-scram mixing and thermal stratification to support decay heat removal in pool type SFR

Federal POC – Thomas Sowinski: <u>Thomas.Sowinski@nuclear.energy.gov</u>
Technical POC – Tanju Sofu: tsofu@anl.gov